STAT1 exists as two alternatively spliced isoforms, STAT1α and STAT1β; the latter lacks the C-terminal transactivation domain (TAD). Our previous study with gene-modified mice expressing only the STAT1β isoform (Stat1β/β) demonstrated that STAT1β is capable of inducing a subset of IFNγ-responsive genes but the reason for the gene-selectivity remained unclear. In this study we used primary macrophages form wild-type and Stat1β/β mice to characterize the role of the C-terminal TAD in the transactivation and cofactor recruitment to paradigmatic IFNγ-responsive genes. Our key discoveries are that the STAT1β isoform is differentially required for (i) the recruitment of the Mediator coactivator complex and the transition of poised RNA polymerase II (Pol II) into productive elongation, (ii) the association of the general transcription factors TFIIH and p-TEFb to promoter elements specifically at late time points after stimulation or (iii) the establishment of active histone marks and the recruitment of Pol II to the STAT1 and IRF1 co-regulated gene promoters.

Collectively, our results shed new light on the communication of STAT1 with the transcriptional machinery and provide mechanistic insights into isoform-specific transcriptional activities of STAT1.

Publication in Frontiers in Immunology

Matthias Parrini, Katrin Meissl, Mojoyinola Joanna Ola, Therese Lederer, Ana Puga, Sebastian Wienerroither, Pavel Kovarik, Thomas Decker, Mathias Müller  and Birgit Strobl

The C-Terminal Transactivation Domain of STAT1 Has a Gene-Specific Role in Transativation and Cofactor Recruitment (2018), doi: 10.3389/fimmu.2018.02879

RNA helicase DDX3X is important for many aspects of RNA metabolism and RNA translation. In addition, several publications have highlighted a role for DDX3X in immunity, as it contributes to the induction of type I IFNs. However, the in vivo relevance of DDX3X in cells of hematopoietic origin remains unexplored. Using mouse genetics, we demonstrate that DDX3X makes important contributions to innate immunity against pathogens beyond its role in IFN induction, by influencing hematopoiesis as well as the transcription of many antimicrobial genes. By comparison between cells from male or female animals we show that DDX3X functions are in part compensated by its Y-chromosomal homologue DDX3Y. This suggests that DDX3X may be one of the factors contributing to well-established differences of the male and female immune systems. 

Publication in PLoS Pathogens

Daniel Szappanos, Roland Tschismarov, Thomas Perlot, Sandra Westermayer, Katrin Fischer, Ekaterini Platanitis, Fabian Kallinger, Maria Novatchkova, Caroline Lassnig, Mathias Müller, Veronika Sexl, Keiryn L. Bennett, Michelle Foong-Sobis, Josef M. Penninger and Thomas Decker

The RNA helicase DDX3X is an essential mediator of innate antimicrobial immunity (2018),

Acute myeloid leukaemia (AML) is the most common type of acute cancer of the blood and bone marrow in adults. This type of cancer usually progresses quickly and only 26 percent of the patients survive longer than 5 years as resistance against established treatments arises. The most common molecular cause is FLT3 mutations, which result in hyper-activation of STAT5. An international consortium of researchers cofounded by SFB-F61 now report on an early preclinical development to target STAT5 directly, which cooperates well with existing therapies.

Publication in Leukemia:

Bettina Wingelhofer, Barbara Maurer, Elizabeth C. Heyes, Abbarna C. Cumaraswamy, Angelika Berger-Becvar, Elvin D. de Araujo, Anna Orlova, Patricia Freund, Frank Ruge, Jisung Park, Gary Tin, Siawash Ahmar, Charles-Hugues Lardeau, Irina Sadovnik, Dávid Bajusz, György Miklós Keserű, Florian Grebien, Stefan Kubicek, Peter Valent, Patrick T. Gunning and Richard Moriggl,

Pharmacologic inhibition of STAT5 in acute myeloid leukemia, Leukemia (2018), doi:10.1038/s41375-017-0005-9

Figure: Schematic representation of the STAT5 Inhibitor mapped onto the SH2-domain of STAT5