Targeting STAT5 in hematopoietic cancers

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive immature T cell cancer. A research team led by Prof. Richard Moriggl at the University of Veterinary Medicine Vienna has studied the most frequent and clinically challenging STAT5BN642H driver in T cell development and immature T cell cancer onset in genetically modified mice. Supported by SFB groups and highly regarded international collaborators the first author Tobias Suske found small molecular agents targeting STAT5B drastically reduced cancer growth in human T-ALL cell lines grafted into mice.

Published in The Journal of Clinical Investigation

Tobias Suske, Helena Sorger, Gabriele Manhart, Frank Ruge, Nicole Prutsch, Mark W. Zimmerman, Thomas Eder, Diaaeldin I. Abdallah, Barbara Maurer, Christina Wagner, Susann Schönefeldt, Katrin Spirk, Alexander Pichler, Tea Pemovska, Carmen Schweicker, Daniel Pölöske, Emina Hubanic, Dennis Jungherz, Tony Andreas Müller, Myint Myat Khine Aung, Anna Orlova, Ha Thi Thanh Pham, Kerstin Zimmel, Thomas Krausgruber, Christoph Bock, Mathias Müller, Maik Dahlhoff, Auke Boersma, Thomas Rülicke, Roman Fleck, Elvin Dominic de Araujo, Patrick Thomas Gunning, Tero Aittokallio, Satu Mustjoki, Takaomi Sanda, Sylvia Hartmann, Florian Grebien, Gregor Hoermann, Torsten Haferlach, Philipp Bernhard Staber, Heidi Anne Neubauer, Alfred Thomas Look, Marco Herling, Richard Moriggl

 

Hyperactive STAT5 Hijacks T-Cell Receptor Signaling and Drives Immature T-Cell Acute Lymphoblastic Leukemia

https://doi.org/10.1172/JCI168536

Targeting STAT5 news

Vaccine boosts innate immunity in people with dormant immune cells

Change of Subproject Leadership

The SFB Jak-Stat subproject leader Richard Moriggl took the full professorship Biochemistry and Metabolism Research at the Department of Biosciences & Medical Biology of the Paris Lodron University Salzburg in March 2024. The SFB member congratulate Richard to this career step. Richard will remain an associate member of the SFB. Mathias Müller – the coordinator of the SFB – has taken over the leadership of the Subproject ‘Partners in Crime: STAT3 and CDK6 Control Transformation in Hematopoietic Cells’. Mathias will be supported by the SFB associate members Dagmar Gotthardt, Karoline Kollmann, Thorsten Klampfl and Sebastian Kollmann.

Vaccine boosts innate immunity in people with dormant immune cells

Bacillus Calmette-Guérin (BCG) is one of the world’s oldest and most widely used vaccines. It was developed in the early 20th century to provide protection from tuberculosis. Surprisingly, this vaccine protects not only against tuberculosis but also reduces the risk for various other infections, through a mechanism called trained immunity. A new study led by SFB member Christoph Bock and Mihai Netea found that epigenetic cell states predict whether or not an individual profits from the “wake-up call” to the innate immune system that is provided by the BCG vaccine. This discovery contributes to the development of future therapeutics that induce protective trained immunity.

Published in Immunity

Simone J C F M Moorlag, Lukas Folkman, Rob Ter Horst, Thomas Krausgruber, Daniele Barreca, Linda C Schuster, Victoria Fife, Vasiliki Matzaraki, Wenchao Li, Stephan Reichl, Vera P Mourits, Valerie A C M Koeken, L Charlotte J de Bree, Helga Dijkstra, Heidi Lemmers, Bram van Cranenbroek, Esther van Rijssen, Hans J P M Koenen, Irma Joosten, Cheng-Jian Xu, Yang Li, Leo A B Joosten, Reinout van Crevel, Mihai G Netea, Christoph Bock

Multi-omics analysis of innate and adaptive responses to BCG vaccination reveals epigenetic cell states that predict trained immunity

https://doi.org/10.1016/j.immuni.2023.12.005

BCG vaccination leads to 'trained' cells of the innate immune system. © Robert Horst

CeMM team leading the data analysis: Christoph Bock, Rob ter Horst, Thomas Krausgruber, Lukas Folkmann (from left to right; ©CeMM)

DOC scholarships from the Austrian Academy of Sciences (ÖAW) for young scientists at the Vetmeduni Vienna.

Myint Aung (group Heidi Neubauer) and Jonatan Kendler (group Richard Moriggl) were each awarded one of the coveted DOC scholarships of the Austrian Academy of Sciences (ÖAW, https://stipendien.oeaw.ac.at/en/fellowships/doc). The scholarships are awarded to outstanding young scientists in a highly competitive selection process.

Myint will use preclinical mouse modelst o investigate the oncogenic STAT5B-driven disease mechanisms and druggabilities in γδ T cell lymphoma.

Jonatan aims to unravel the interplay of CDK6 and STAT5B in NPM/ALK-driven haematopoietic malignancies to define therapeutic vulanerabilities. Both scholarships will start in 2024.

The SFB members congratulate!

Myint Aung (group Heidi Neubauer) (right), and Jonatan Kendler (group Richard Moriggl) (left), were each awarded one of the coveted DOC scholarships of the Austrian Academy of Sciences

Sylvia Knapp receives Prize of the City of Vienna

On 16 May 2023 Sylvia Knapp, Professor of Infection Biology at the Medical University of Vienna and PI of SFB F61, was awarded the Prize of the City of Vienna in the category Medical Sciences. The awards for outstanding achievements in culture and science were presented by the City Councillor for Culture and Science, Veronica Kaup-Hasler, in a festive ceremony in the ballroom of Vienna City Hall.

For further information see:

https://www.meduniwien.ac.at/web/en/about-us/news/2023/news-in-may-2023/sylvia-knapp-erhaelt-preis-der-stadt-wien/

https://presse.wien.gv.at/2022/12/09/preise-der-stadt-wien-2022-fuer-herausragende-leistungen-in-kultur-und-wissenschaft

Slyvia Knapp

The SFB members Anna Orlova and Richard Moriggl are co-founders of the pharmaceutical start-up RIANA Therapeutics spun out of Vetmeduni Vienna in February 2023. RIANA Therapeutics focuses on developing novel anti-cancer treatments with hope to improve life of cancer patients.

For further information see https://www.vetmeduni.ac.at/en/universitaet/infoservice/presseinformationen/presseinformationen-2023/riana-viennese-start-up-develops-novel-precise-anti-cancer-drugs

Foto credit Thomas Suchanek/Vetmeduni Vienna

The SFB Jak-Stat subproject leader Veronika Sexl took the lead of the University of Innsbruck (https://www.uibk.ac.at/en/) in March 2023. Veronika was appointed head of the rectorate in an international selection process for a period of four years. The SFB members congratulate Veronika to this highly responsible and prestigious position. We will miss Veronika’s scientific excellence and spirit in our team and wish her a successful and fruitful time in Innsbruck.

Richard Moriggl – a long-term member of the SFB – will take over the leadership of the subproject ‘Partners in Crime: STAT3 and CDK6 Control Transformation in Hematopoietic Cells’. We highly appreciate the commitment of Richard and look forward to exciting interactions.

Foto credit Michael Bernkopf/Vetmeduni Vienna

Interferons (IFNs) activate cell-intrinsic defence mechanisms to fight infections. The innate immune response to infections overlaps and cooperates with cellular stress signalling governed by the mitogen-activated protein kinase (MAPK) p38. Laura Boccuni in the group of Thomas Decker unravelled the molecular mechanism how macrophages merge the IFN JAK-STAT and the stress p38 MAPK pathways to enhance the beneficial but also the detrimental effects of the innate and inflammatory responses. With the exception of one, all SFB groups contributed to this SFB-financed publication.

Published in Science Signaling

Laura Boccuni, Elke Podgorschek, Moritz Schmiedeberg, Ekaterini Platanitis, Peter Traxler, Philipp Fischer, Alessia Schirripa, Philipp Novoszel, Angel R. Nebreda, J. Simon C. Arthur, Nikolaus Fortelny, Matthias Farlik, Veronika Sexl, Christoph Bock, Maria Sibilia, Pavel Kovarik, Mathias Müller, Thomas Decker

Stress signaling boosts interferon-induced gene transcription in macrophages
https://doi.org/10.1126/scisignal.abq5389

See also for RELATED FOCUS: Rewiring the logic board of IFN signaling, by John D. MacMicking John D. MacMicking
https://doi.org/10.1126/scisignal.adf0778

The JAK-STAT signaling pioneers James E Darnell, John J O‘Shea and George R Stark and former or current co-workers in their labs co-author a comprehensive review on the current knowledge on the cellular and systemic activities of JAKs and STATs and possibilities of their therapeutic targeting in disease settings (see https://doi.org/10.1016/j.cell.2022.09.023).

The Viennese JAK-STAT community congratulates this fascinating pathway to its 30ies anniversary!

Katarzyna Sitnik wins Merit Award of CMV Conference

  https://www.cmv2022.org Abstract of Oral Presentation Pdgfra-positive fibroblasts are a major site of mouse cytomegalovirus latency in vivo. Latent cytomegalovirus (CMV) infections pertain to most of the human population, yet our understanding of the cell types that carry latent CMV in vivo remains limited. While endothelial cells and macrophages have been identified previously as sites […]