The interferons initiate a signaling process that causes the cell to activate the protein complex ISGF3 for driving antimicrobial gene expression. Scientists led by Thomas Decker at the Max Perutz Labs now found out that two of the three proteins forming this complex are permanently present at these genes, independently of the activating cascade caused by interferons. STAT2-IRF9 forms this ‘light’ version of ISGF3 and allows for homeostatic low expression of antimicrobial genes. Upon pathogen recognition interferons are produced and activate the complete version of ISGF3 composed of STAT1-STAT2-IRF9.  This trimeric ISGF3 switches to a full-fledged antimicrobial transcriptional program. The homeostatic presence of STAT2-IRF9 at antimicrobial genes governs cellular alertness and the rapid exchange to the interferon induced complete ISGF3 explains how the innate immune system activates in such a quick manner.

Publication in Nature Communications

Ekaterini Platanitis, Duygu Demiroz, Anja Schneller, Katrin Fischer, Christophe Capelle, Markus Hartl, Thomas Gossenreiter, Mathias Müller, Maria Novatchkova and Thomas Decker

A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription (2019);